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1. Introduction

The vibration of circular and annular membranes is fairly well known [1]. However, there seems
to be little literature on the coupling between membranes and rigid bodies. The present Letter
considers such a problem: an annular membrane with a free, massed, finite core. We assume the
membrane tension is large enough such that both the weight of the core and the weight of the
membrane cause only small static deformations, and the vibration problem becomes decoupled.
We ask, what is the effect of the core on the natural frequencies of the membrane? Notice the core
can be any axisymmetric mass, including a cylinder, a sphere or a disk.
When the radius of the core shrinks to zero, the problem becomes a circular membrane

supporting a point mass at the center. If further the mass is relatively large, it becomes a pinpoint
constraint [2], and if the mass is relatively small, it resembles a hard spot [3]. Since for both special
cases the frequency is the same as that of a circular membrane without a core, would a finite point
mass also have no effect on the frequency?

2. Formulation

Fig. 1(a) shows an annular membrane of radius R attached to a rigid cylinder (or any
axisymmetric body) of radius bR: Normalize all lengths by R: Let the (transverse) displacement be
given by

u ¼ wðrÞ sinðnyÞeiOt; ð1Þ

where w is an amplitude function, r; y are cylindrical co-ordinates, t is the time and O is
the frequency of oscillation. The equation of motion of the membrane is the Helmholtz
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equation [1]

w00ðrÞ þ
w0ðrÞ

r
� n2

wðrÞ
r2

þ k2w ¼ 0; ð2Þ

where k ¼ OR [(density per area r)/(tension per length T)]1/2 is the normalized frequency. The
boundary conditions are that the displacement is zero at the outer boundary

wð1Þ ¼ 0 ð3Þ

and that the dynamic loads are balanced with those of the rigid core.
The rigid core would sustain only two kinds of transverse vibrations: an up–down symmetric

vibration and an antisymmetric rotational vibration about a diameter through the center of mass.
The symmetric case (n ¼ 0) is shown in Fig. 1b, where a vertical force balance gives

2p bT
@u

@r
ðbÞ ¼ m

@2u

@t2
ðbÞ: ð4Þ

Here m is the mass of the solid core. Eq. (1) then gives

2bw0ðbÞ þ k2swðbÞ ¼ 0; ð5Þ

where

s ¼ m=pR2r ð6Þ

is a ratio representing the relative mass of the solid. Fig. 1c shows the antisymmetric case (n ¼ 1).
A moment balance about the swivel axis y ¼ 0 gives

2

Z p

0

Tb2R sin y
@u

@r
ðbÞ � TbR sin yuðbÞ

� �
dy ¼ I

d2a
dt2

; ð7Þ

where I is the moment of inertia of the solid about the swivel axis and a is the inclination angle
related to u by

a ¼
uðbÞ

bR sin y
: ð8Þ

Substitution of Eq. (1) and simplifying gives

b3w0ðbÞ � ðk2Z� b2ÞwðbÞ ¼ 0; ð9Þ

Fig. 1. (a) The circular membrane with a rigid core. (b) Forces in symmetric vibration. (c) Forces in antisymmetric

vibration.
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where
Z ¼

I

pR4r
ð10Þ

is a ratio representing the relative moment of inertia of the solid.
The solid core does not accommodate vibrations with higher nodal diameters (nX2). The

corresponding boundary condition for the membrane is thus

wðbÞ ¼ 0; nX2: ð11Þ

3. Some asymptotic properties

For the axisymmetric case the solution to Eq. (2) satisfying Eq. (3) is

w ¼ Y0ðkÞJ0ðkrÞ � J0ðkÞY0ðkrÞ; ð12Þ

where J and Y are Bessel functions. Eq. (5) then gives the characteristic equation

2b½Y0ðkÞJ1ðkbÞ � J0ðkÞY1ðkbÞ� � ks½Y0ðkÞJ0ðkbÞ � J0ðkÞY0ðkbÞ� ¼ 0: ð13Þ

For small arguments the Bessel functions have the following expansions:

J0ðzÞ ¼ 1þOðz2Þ; Y0ðzÞ ¼
2

p
gþ ln

z

2

� �h i
þOðz2Þ;

J1ðzÞ ¼
z

2
þOðz3Þ; Y1ðzÞ ¼ �

2

pz
þ
1

p
z ln z þOðzÞ: ð14Þ

Fig. 2. Frequencies for the symmetric case for constant s values. Dashed curves are from Eq. (16).
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Thus for small b; The leading terms of Eq. (13) simplifies to

J0ðkÞð2þ k2sln bÞ ¼ 0: ð15Þ

There are two sets of roots to Eq. (15). The first set consists of the zeroes of J0 which govern the
symmetric vibration of a circular membrane without a core. This result is independent of the core
mass, although higher order corrections would be affected. The second set has lower frequency,
and is given by

k ¼

ffiffiffiffiffiffiffiffiffiffiffiffi
2

s lnbj j

s
ð16Þ

which becomes zero as b approaches zero. Notice that if s is infinite (a pinned center), this
frequency is identically zero and should be discarded since it yields a trivial solution for
displacement. On the other hand, if s is zero (the collared case), the frequency is infinite and also
insignificant. Only for finite mass do we get the second set of frequencies.

Fig. 3. Eigenfunctions for symmetric case, b ¼ 0:2: s values are shown. (a) First mode, (b) second mode.
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For the antisymmetric (n ¼ 1) case the general solution is

w ¼ Y1ðkÞJ1ðkrÞ � J1ðkÞY1ðkrÞ: ð17Þ

Eq. (9) yields

kb3½Y1ðkÞJ0ðkbÞ � J1ðkÞY0ðkbÞ� þ ðk2Z� 2b2Þ½Y1ðkÞJ1ðkbÞ � J1ðkÞY1ðkbÞ� ¼ 0: ð18Þ

Similar asymptotic expansions for small b show

J1ðkÞðk2Z� 2b2Þ ¼ 0: ð19Þ

The first factor is recognized as the antisymmetric mode of the circular membrane, while the
second factor gives a new frequency important only for finite inertia

k ¼ b

ffiffiffi
2

Z

s
: ð20Þ

The higher modes for nX2 yield the characteristic equation

YnðkÞJnðkbÞ � JnðkÞYnðkbÞ ¼ 0; ð21Þ

which is the same as that of an annular membrane with fixed boundaries. Since the core mass has
no effect, we shall not investigate further.

4. Results and discussion

For given core radius b; mass ratio s or moment of inertia ratio Z; the exact non-linear
characteristic equations, Eqs. (13) and (18), are solved for the frequency k by a simple root search

Fig. 4. Frequencies for the antisymmetric case for constant Z values. Dashed lines are from Eq. (20). Dotted line is from
Eq. (21) for n ¼ 2:
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algorithm. Fig. 2 shows k; for the axisymmetric case, as a function of b and various constants s:
The curve s ¼ N corresponds to the annular membrane with fixed boundaries, whose singular
behavior for small b (sharply rising from 2.4048, the first zero of J0) was discussed previously [2].
The curves for s ¼ 0 represent the collared membrane (annular membrane bounded by a mass-
less inner ring). The fundamental frequency also starts from 2.4048, but rises very slowly [3]. For
finite mass ratios, we were expecting the frequencies to lie between these two limiting curves. But
we are surprised to see that there is a void (given b; some frequencies are absent for any mass
ratio) between these two curves. Thus the frequencies for finite mass ratios are essentially
separated into distinct bundles. As b is increased, the lowest frequency bundle, called the first
mode, rises steeply from zero as jln bj�1=2 according to Eq. (16), then becomes infinite as b

approaches one. The effect of increasing mass ratio s is to decrease the frequency. This lowest
bundle, however, does not include the singular cases of the mass-less collar (s ¼ 0) or the fixed
boundary (s ¼ N). The second bundle, or second mode, starts from 2.4048 and increases with b

as ln bj j�1: It does not include the s ¼ 0 case but includes the s ¼ N case studied by Wang [2].
Typical eigenfunctions for the first two modes are shown in Fig. 3. Keep in mind that the first
mode does not exist for s ¼ N; the amplitudes are arbitrary.

Fig. 5. Eigenfunctions for the antisymmetric case, b ¼ 0:2: Z values are shown. (a) First mode, (b) second mode.
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The results for the antisymmetric case are shown in Fig. 4. Now the first mode increases from
zero proportional to b as indicated by Eq. (20). Again the singular cases for the moment of inertia
ratios Z ¼ 0 or Z ¼ N are excluded. The second mode, separated by a void region, starts from
3.8317, the first zero of J1ðkÞ; and can be shown to increase as the square of b: Typical
eigenfunctions for the antisymmetric case are shown in Fig. 5. Notice the sensitivity to low Z
values.
For a given rigid core and membrane density, one can use the values of sand Z to find the

frequencies of vibration from Figs. 2 and 4. The ratio ðZ=sÞ is independent of membrane
properties and is given in Table 1 for some simple geometries.
Since bo1; the value of Z is in general much less than that of s; or the axisymmetric case mostly

dominates the fundamental frequency. However, for a core which has relatively large moment of
inertia, such as the solid cylinder of high aspect ratio A, the antisymmetric (wobbling) case
dominates. Also, due to its slower rise from zero, the (first) antisymmetric frequency is always
lower than that of the symmetric frequency at small b values.
If the dimension of the mass is indeed identically zero, our results show that the only

frequencies are the zeroes of JnðkÞ; or the mass has no effect on the membrane. Since all mass has
some dimension, we see from Fig. 2 that for the symmetric case there is a sharp rise, including a
new low frequency first mode. This singular behavior at small b is difficult to predict by any
energy method or numerical method. The finiteness of the dimension also contributes to some
moment of inertia. Fig. 4 shows that although the antisymmetric case has no singularity at b ¼ 0;
the small moment of inertia still has considerable effect, especially promoting the low frequency
wobbling mode.
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Table 1

Ratio of Z=s; A is the aspect ratio of the finite cylinder

Geometry Disk Ring Solid sphere Solid cylinder

Z=s b2=4 b2=2 2b2=5 b2ð4A2 þ 3Þ=12

Table 1

Ratio of Z=s; A is the aspect ratio of the finite cylinder
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